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Abstract
We describe the effects of disorder in a two-dimensional electron gas in the
presence of a parallel magnetic field. We argue that localized states lead to
the formation of local moments. The parallel magnetic field for complete
spin polarization depends on the electron density and the density of local
moments and we can explain the observed dependence of the saturation field
of the magnetoresistance on the sample quality. The magnetic properties of
the electron spins are described in terms of a Curie-like paramagnetism due to
localized moments and a Pauli paramagnetism due to itinerant electrons.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years the transport properties of the two-dimensional electron gas (2DEG) have been
studied in detail at low temperature. The experiments have been interpreted in terms of a
metal–insulator transition (MIT) occurring at a critical electron density nc [1]. Applying an
in-plane magnetic field to the metallic phase of a diluted 2DEG leads to a strong positive
magnetoresistance (MR), which saturates when the electron gas is fully spin polarized [2, 3].
The positive MR found for samples with weak disorder is in quantitative agreement with a
calculation of [4], where the modifications of the screening properties and the density of states
due to spin polarization are taken into account.

In this paper we describe the saturation field of the MR and the magnetic properties of a
strongly disordered 2DEG when the system is in the metallic phase. We use a model developed
earlier for the three-dimensionalelectron gas (3DEG) and confirmed experimentally [5–7]. We
believe that this model has not been used before to explain transport properties of a 2DEG in a
parallel magnetic field. We apply in this paper the term ‘strongly disordered’ to indicate that
we consider a 2DEG in which the metallic phase is characterized by extended and localized
electron states. With the term ‘weak disorder’ we describe a situation where the existence of
localized states can be neglected.

0953-8984/02/297091+06$30.00 © 2002 IOP Publishing Ltd Printed in the UK 7091

http://stacks.iop.org/JPhysCM/14/7091


7092 A Gold and V T Dolgopolov

The paper is organized as follows. In section 2 we describe the model and the theory. A
short discussion is given in section 3. We compare our theoretical results with experiments in
section 4 and we conclude in section 5.

2. Model and theory

Let us start with a dense 2DEG in which many-body effects (for instance exchange effects)
can be omitted, e.g. rs � 1 where rs is the Wigner–Seitz parameter. Extension effects of
the electron gas perpendicular to the surface are also neglected: orbital effects do not exist
but spin effects are taken into account. An in-plane magnetic field leads to a Zeeman energy
and to a partial spin polarization of the electron gas. In the 2DEG with weak disorder the
spin-polarization parameter ξ is given as a function of the density of up and down electrons as
ξ = (nu − nd)/(nu + nd) = B/Bc0. ξ controls the screening properties of the electron system
at B � Bc0 = εF/gbµB . Here gb is the band value of the Landé g-factor, µB is the Bohr
magneton and εF is the Fermi energy of the spin-polarized electron gas: εF = n/ρF where ρF

is the density of states of the spin-polarized 2DEG. For B > Bc0 the system is completely spin
polarized; both screening properties and resistance are independent of the magnetic field. If
rs � 1 then, according to [4], the sample resistance decreases by a factor of two in the region
0 < B < Bc0 with an increase of B . In systems with strong disorder localized states do exist
even in the metallic phase deep under the Fermi level. The metallic phase is described as a
system where n > nc, which corresponds to εF > εc (where εc is the mobility edge). Electron
states with an energy ε < εc are localized while electron states with an energy εc < ε � εF

are non-localized [8, 9].
In the absence of a magnetic field, extended states in metals have a spin degeneracy of

two for spin-up and spin-down electrons. Due to the strong repulsive Coulomb interaction,
localized states in the band tail can be singly occupied or doubly occupied: for weak disorder
the density of singly occupied (so) localized states nso will be small, nso � nc; for strong
disorder all localized states are singly occupied, nso � nc [8].

Singly occupied states contribute to the thermodynamic properties of the 2DEG, despite
the fact that they are placed deep below the Fermi level. The contribution can be considered in
the framework of the phenomenological two-component model3 for localized electrons (local
moments) and extended (itinerant) electrons [5]. This two-component model was successfully
used previously to describe thermodynamic and magnetic properties of the strongly disordered
3DEG as realized in phosphorus-doped silicon [5–7]. For spins without interaction, one
assumes Curie paramagnetism for the localized singly occupied states of density nso and Pauli
paramagnetism for the states of density n − nso. The singly occupied localized states are
treated as classical spins and are spin polarized if the temperature T is sufficiently small:
kB T � gbµB B1 where kB is Boltzmann’s constant. The electrons become completely spin
polarized for B > Bc with gbµB Bc � (n − nso)/ρF . Bc is expressed as

Bc = Bc0 − 2hnso

egvgbmb/me
, (1)

where mb is the band value of the electron effective mass and gv is the valley degeneracy. The
spin susceptibility χ is the sum of two terms:

χ = χso + χs (2)

3 We remark that the term ‘two-fluid model’ was used in [5]. The local moments in this model are localized and we
prefer to use the term ‘two-component model’ instead.
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Figure 1. Magnetization as a function of the magnetic field B . The solid line represents the
electron gas with localized and extended states within the two-component model. The dashed
curve represents the electron gas without localized states. The fields B1, Bc and Bc0 are described
in the text. We use for the effective g-factor g∗ = 2.

due to localized moments (χso) and due to extended states4 (χs). For non-interacting localized
classical spins one can use the Curie law χso = nsoµ

2
B/kB T . For interacting localized moments

we can use numerical results from a model calculation for random Heisenberg antiferromagnets
and the susceptibility is given by [10]

χso = nsoµ
2
B(T0/T )α/kB T0; (3)

α � 0.75 is an exponent and T0 is a characteristic temperature. For α = 1, one gets the Curie
law. For itinerant electrons the spin susceptibility χs for low temperature is given in terms of
the spin susceptibility of the free electron gas.

3. Discussion

In figure 1 we show what we expect to find for the magnetization of the disordered electron
gas as a function of the magnetic field for kB T � εF . For B � B1 the magnetization
increases linearly with the field. For B � B1 the localized spins are all oriented. For B1 < B
the physics discussed above also applies: the localized electrons of the band tail contribute
to the spin susceptibility, to the magnetization and to the specific heat. The magnetic field
corresponding to the complete spin polarization and to MR saturation is expected to be smaller
than in the case of a 2DEG with weak disorder. Nevertheless, the equations written above
have to be modified and the applicability of these equations to the real situation has to be
considered in more detail. For rs � 1 the magnetization of delocalized electrons in figure 1
is not expected to be a linear function of the magnetic field any longer: many-body effects in
the 2DEG give rise to an effective mass m∗(n, ξ) and to an effective Landé factor g∗(n, ξ).

In the theory for the MR for strong disorder [11], where localized states are present,
the resistivity ratio ρ(B > Bc)/ρ(B = 0) is strongly enhanced near the MIT compared to
the resistivity ratio for weak disorder. Moreover, for rs � 1 one finds a positive MR. The
saturation field Bc was not calculated in [11]. We suggest that Bc is given by equation (1)
where gb and mb (and gb and mb in Bc0) are replaced by g∗(n, Bc) and m∗(n, Bc) respectively.

4 Within the model as we consider in this paper, diamagnetic contributions to the magnetization are absent. However,
we expect in real structures, which have a finite width perpendicular to the surface, diamagnetic contributions to exist.
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Now we address the question of the experimental situation for Si MOSFET. We start from
weakly disordered 2DEG systems. The MR was studied in [12–14] and there are, apparently,
two different ways to treat the experimental data.

The first way, used in [12, 13], is to scale the MR in relatively weak magnetic fields, where
the spin polarization ξ is defined by g∗(n, B = 0) and m∗(n, B = 0). According to [15] a
parallel magnetic field does not affect the effective g-factor and the effective mass up to a spin
polarization of about ∼20%. In [12, 13] this interval was found to be larger than 20%. Using
the scaling procedure to extract the product g∗(n, B = 0)m∗(n, B = 0) gives values close to
the results of direct measurements at low spin polarization [16].

The second way is to measure the magnetic field of the saturation of the MR [14]. Using
this procedure the product g∗(n, Bc)m∗(n, Bc) was determined. It is not very surprising that
the results from these two treatments of experimental data are different, especially in the dilute
limit.

Recently Pudalov et al [14, 17] measured the in-plane MR of (100) Si inversion layers and
demonstrated that the magnetic field for MR saturation Bsat depends strongly on the sample
quality. For given density the saturation field in experiments was found to decrease with
increasing disorder. We believe that in these experiments the influence of singly occupied
states on the saturation field is being observed.

We stress that localized electrons are not easily seen in transport measurements of samples
which are in the metallic phase. For instance, the carrier density measured via Shubnikov–
de Haas (SdH) oscillations in a quantizing magnetic field nSd H is insensitive to the number
of electrons in the band tail and gives the total number of electrons nSd H = n. This fact has
been known since the pioneering work [19], in which a Si MOSFET system was measured
with a peak mobility of 3000 cm2 V−1 s−1, which is about an order of magnitude smaller than
in the best modern samples. In this sample the number of electrons in the band tail (localized
electrons) is estimated as 5 × 1011 cm−2 (the mobility vanishes at this density). Nevertheless,
the SdH period is consistent with the density measured in a high magnetic field and the total
number of Landau levels (or the oscillation number) is consistent with that calculated for the
total number of electrons.

According to a number of experimental results [12, 14, 18], this density nSd H is nearly
identical to the density nH measured using the Hall voltage. This fact has sometimes been
interpreted as evidence for the absence of localized states in the metallic phase of the samples
studied, despite the quite different nc-values of the different samples. We stress that localized
states are present in metallic samples. The conclusion that one must draw from the result
nSd H � nH is that one cannot identify localized states by means of the Hall resistivity. It
appears that the Hall resistivity is non-critical at the MIT.

In figure 2 we compare the experimental results of [14] for Bc with a simple fit based
on the ideas developed above. We neglect the dependence of the effective mass and the
effective g-factor on the spin polarization—it appears that the sample quality plays the most
important role in determining the value of Bc. For the best sample (Si9Nj) with peak mobility
µpeak = 4.3 m2 V

−1
s−1 a larger saturation field than that calculated in a such way was

reported [14]; see figure 2. We believe that this could be caused by the above-mentioned
dependence of the 2DEG parameters on ξ .

With nso as a fitting parameter we find good agreement with experiment if we use
nso = 0.6 × 1011 cm−2 for sample Si22/9.5 and nso = 1.1 × 1011 cm−2 for sample5

Si43. The density dependence of the g-factor g∗ and the effective mass m∗ are taken into

5 In three dimensions and for n > nc it was found that the density of local moments decreases with increasing electron
density [6, 7]. We use for the fit in figure 2 a constant value of nso , independent of the electron density and also
independent of the magnetic field.
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Figure 2. Saturation field Bsat as a function of the electron density n. The solid curves represent
Bc according to equation (1). The dashed line shows Bc0 for the clean system. The solid symbols
represent the saturation field as determined from experimental MR data [14]. The empty circles
represent Bc0, with g∗ and m∗ determined from very recent measurements of the SdH effect [17].

account by using experimental data [15, 20]. For sample Si43 the peak mobility was given as
µpeak = 1.96 m2 V

−1
s−1 with nc = 1.4 × 1011 cm−2 [21] and we conclude that nso = 0.8nc.

For sample Si22/9.5a with µpeak = 2.7 m2 V
−1

s−1 we estimate nc as nc ∼ 1.2 × 1011 cm−2

and get nso = 0.5nc. For the saturation field for sample Si15a with µpeak = 3.8 m2 V
−1

s−1

and nc = 0.82 × 1011 cm−2 [21] we used Bc0. We find that for increasing peak mobility the
critical density decreases in agreement with theory [22]. According to Mott [8], one expects
nso � nc for silicon MOSFETs with low peak mobility and nso � nc for silicon MOSFETs
with high peak mobility, in agreement with our results.

The results reported in this paper may have some impact on the understanding of
ferromagnetism in disordered magnetic systems. A transition to a ferromagnetic state was
found recently in diluted magnetic semiconductors such as Ga1−x MnxAs [23]. We believe
that the density of singly occupied states nso could play the role of magnetic ions, giving rise
to a ferromagnetic state of the electron gas at low electron density.

In conclusion, we argue that according to our analysis, recent experiments [14] indicate
local moment formation in the 2DEG in the metallic phase. We suggest that an experimental
determination of Bc would be useful in order to obtain more information on the density of
singly occupied localized states. Experiments should be extended to other 2DEGs and should
include direct measurements of magnetic properties.
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